evals.models.anthropic#
- class AnthropicModel(default_concurrency: int = 20, _verbose: bool = False, _rate_limiter: phoenix.evals.models.rate_limiters.RateLimiter = <factory>, model: str = 'claude-2.1', temperature: float = 0.0, max_tokens: int = 256, top_p: float = 1, top_k: int = 256, stop_sequences: List[str] = <factory>, extra_parameters: Dict[str, Any] = <factory>, max_content_size: Optional[int] = None)#
Bases:
BaseModel
- extra_parameters: Dict[str, Any]#
Any extra parameters to add to the request body (e.g., countPenalty for a21 models)
- invocation_parameters() Dict[str, Any] #
- max_content_size: int | None = None#
If you’re using a fine-tuned model, set this to the maximum content size
- max_tokens: int = 256#
The maximum number of tokens to generate in the completion.
- model: str = 'claude-2.1'#
The model name to use.
- stop_sequences: List[str]#
If the model encounters a stop sequence, it stops generating further tokens.
- temperature: float = 0.0#
What sampling temperature to use.
- top_k: int = 256#
The cutoff where the model no longer selects the words.
- top_p: float = 1#
Total probability mass of tokens to consider at each step.
- anthropic_version(version_str: str) Tuple[int, ...] #