evals.models.vertex#

class GeminiModel(default_concurrency: int = 5, _verbose: bool = False, _rate_limiter: phoenix.evals.models.rate_limiters.RateLimiter = <factory>, project: Optional[str] = None, location: Optional[str] = None, credentials: Optional[ForwardRef('Credentials')] = None, model: str = 'gemini-pro', temperature: float = 0.0, max_tokens: int = 256, top_p: float = 1, top_k: int = 32, stop_sequences: List[str] = <factory>)#

Bases: BaseModel

credentials: Credentials | None = None#
default_concurrency: int = 5#
property generation_config: Dict[str, Any]#
location: str | None = None#

The default location to use when making API calls. If not

Type:

location (str)

max_tokens: int = 256#

The maximum number of tokens to generate in the completion.

model: str = 'gemini-pro'#

The model name to use.

project: str | None = None#

The default project to use when making API calls.

Type:

project (str)

reload_client() None#
stop_sequences: List[str]#

If the model encounters a stop sequence, it stops generating further tokens.

temperature: float = 0.0#

What sampling temperature to use.

top_k: int = 32#

The cutoff where the model no longer selects the words

top_p: float = 1#

Total probability mass of tokens to consider at each step.