evals.models.vertex#
- class GeminiModel(default_concurrency: int = 5, _verbose: bool = False, _rate_limiter: phoenix.evals.models.rate_limiters.RateLimiter = <factory>, project: Optional[str] = None, location: Optional[str] = None, credentials: Optional[ForwardRef('Credentials')] = None, model: str = 'gemini-pro', temperature: float = 0.0, max_tokens: int = 256, top_p: float = 1, top_k: int = 32, stop_sequences: List[str] = <factory>)#
Bases:
BaseModel
- credentials: Credentials | None = None#
- default_concurrency: int = 5#
- property generation_config: Dict[str, Any]#
- location: str | None = None#
The default location to use when making API calls. If not
- Type:
location (str)
- max_tokens: int = 256#
The maximum number of tokens to generate in the completion.
- model: str = 'gemini-pro'#
The model name to use.
- project: str | None = None#
The default project to use when making API calls.
- Type:
project (str)
- reload_client() None #
- stop_sequences: List[str]#
If the model encounters a stop sequence, it stops generating further tokens.
- temperature: float = 0.0#
What sampling temperature to use.
- top_k: int = 32#
The cutoff where the model no longer selects the words
- top_p: float = 1#
Total probability mass of tokens to consider at each step.