experiments.types#

class AnnotatorKind(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)#

Bases: Enum

CODE = 'CODE'#
LLM = 'LLM'#
class Dataset(id: 'DatasetId', version_id: 'DatasetVersionId', examples: 'Mapping[ExampleId, Example]' = <factory>)#

Bases: object

as_dataframe(drop_empty_columns: bool = True) DataFrame#
examples: Mapping[str, Example]#
classmethod from_dict(obj: Mapping[str, Any]) Dataset#
id: str#
version_id: str#
class EvaluationParameters(eval_names: 'FrozenSet[str]', exp_params: 'ExperimentParameters')#

Bases: object

eval_names: FrozenSet[str]#
exp_params: ExperimentParameters#
class EvaluationResult(score: 'Optional[float]' = None, label: 'Optional[str]' = None, explanation: 'Optional[str]' = None, metadata: 'Mapping[str, JSONSerializable]' = <factory>)#

Bases: object

explanation: str | None = None#
classmethod from_dict(obj: Mapping[str, Any] | None) EvaluationResult | None#
label: str | None = None#
metadata: Mapping[str, Dict[str, Any] | List[Any] | str | int | float | bool | None]#
score: float | None = None#
class EvaluationSummary(*args: Any, **kwargs: Any)#

Bases: _HasStats

Summary statistics of experiment evaluations.

Users should not instantiate this directly.

classmethod from_eval_runs(params: EvaluationParameters, *eval_runs: ExperimentEvaluationRun | None) EvaluationSummary#
class Example(id: 'ExampleId', updated_at: 'datetime', input: 'Mapping[str, JSONSerializable]' = <factory>, output: 'Mapping[str, JSONSerializable]' = <factory>, metadata: 'Mapping[str, JSONSerializable]' = <factory>)#

Bases: object

classmethod from_dict(obj: Mapping[str, Any]) Example#
id: str#
input: Mapping[str, Dict[str, Any] | List[Any] | str | int | float | bool | None]#
metadata: Mapping[str, Dict[str, Any] | List[Any] | str | int | float | bool | None]#
output: Mapping[str, Dict[str, Any] | List[Any] | str | int | float | bool | None]#
updated_at: datetime#
class Experiment(id: 'ExperimentId', dataset_id: 'DatasetId', dataset_version_id: 'DatasetVersionId', repetitions: 'int', project_name: 'str')#

Bases: object

dataset_id: str#
dataset_version_id: str#
classmethod from_dict(obj: Mapping[str, Any]) Experiment#
id: str#
project_name: str#
repetitions: int#
class ExperimentEvaluationRun(experiment_run_id: 'ExperimentRunId', start_time: 'datetime', end_time: 'datetime', name: 'str', annotator_kind: 'str', error: 'Optional[str]' = None, result: 'Optional[EvaluationResult]' = None, id: 'str' = <factory>, trace_id: 'Optional[TraceId]' = None)#

Bases: object

annotator_kind: str#
end_time: datetime#
error: str | None = None#
experiment_run_id: str#
classmethod from_dict(obj: Mapping[str, Any]) ExperimentEvaluationRun#
id: str#
name: str#
result: EvaluationResult | None = None#
start_time: datetime#
trace_id: str | None = None#
class ExperimentParameters(n_examples: 'int', n_repetitions: 'int' = 1)#

Bases: object

property count: int#
n_examples: int#
n_repetitions: int = 1#
class ExperimentRun(start_time: 'datetime', end_time: 'datetime', experiment_id: 'ExperimentId', dataset_example_id: 'ExampleId', repetition_number: 'RepetitionNumber', experiment_run_output: 'ExperimentRunOutput', error: 'Optional[str]' = None, id: 'ExperimentRunId' = <factory>, trace_id: 'Optional[TraceId]' = None)#

Bases: object

dataset_example_id: str#
end_time: datetime#
error: str | None = None#
experiment_id: str#
experiment_run_output: ExperimentRunOutput#
classmethod from_dict(obj: Mapping[str, Any]) ExperimentRun#
id: str#
property output: Dict[str, Any] | List[Any] | str | int | float | bool | None#
repetition_number: int#
start_time: datetime#
trace_id: str | None = None#
class ExperimentRunOutput(task_output: 'TaskOutput')#

Bases: object

classmethod from_dict(obj: Mapping[str, Any] | None) ExperimentRunOutput#
task_output: Dict[str, Any] | List[Any] | str | int | float | bool | None#
class RanExperiment(*args: Any, **kwargs: Any)#

Bases: Experiment

An experiment that has been run.

Users should not instantiate this object directly.

add(eval_summary: EvaluationSummary, *eval_runs: ExperimentEvaluationRun | None) RanExperiment#
as_dataframe(drop_empty_columns: bool = True) DataFrame#
dataset: Dataset#
eval_runs: Tuple[ExperimentEvaluationRun, ...] = ()#
eval_summaries: Tuple[EvaluationSummary, ...] = ()#
get_evaluations(drop_empty_columns: bool = True) DataFrame#
property info: str#
params: ExperimentParameters#
runs: Mapping[str, ExperimentRun]#
task_summary: TaskSummary#
property url: str#
class TaskSummary(*args: Any, **kwargs: Any)#

Bases: _HasStats

Summary statistics of experiment task executions.

Users should not instantiate this object directly.

classmethod from_task_runs(params: ExperimentParameters, task_runs: Iterable[ExperimentRun | None]) TaskSummary#
class TestCase(example: 'Example', repetition_number: 'RepetitionNumber')#

Bases: object

example: Example#
repetition_number: int#
getrandbits(k) x.  Generates an int with k random bits.#