inferences.inferences#
- class Inferences(dataframe: DataFrame, schema: Schema | Any, name: str | None = None)#
Bases:
object
A dataset to use for analysis using phoenix. Used to construct a phoenix session via px.launch_app
- Parameters:
dataframe (pandas.DataFrame) – The pandas dataframe containing the data to analyze
schema (phoenix.Schema) – the schema of the dataset. Maps dataframe columns to the appropriate model inference dimensions (features, predictions, actuals).
name (str, optional) – The name of the dataset. If not provided, a random name will be generated. Is helpful for identifying the dataset in the application.
- Returns:
dataset – The dataset object that can be used in a phoenix session
- Return type:
Examples
>>> primary_inferences = px.Inferences( >>> dataframe=production_dataframe, schema=schema, name="primary" >>> )
- property dataframe: DataFrame#
- classmethod from_name(name: str) Inferences #
Retrieves a dataset by name from the file system
- classmethod from_open_inference(dataframe: DataFrame) Inferences #
- property name: str#
- to_disc() None #
writes the data and schema to disc
- class OpenInferenceCategory(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)#
Bases:
Enum
- actual = 'actual'#
- feature = 'feature'#
- id = 'id'#
- prediction = 'prediction'#
- tag = 'tag'#
- timestamp = 'timestamp'#
- class OpenInferenceSpecifier(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)#
Bases:
Enum
- default = ''#
- embedding = 'embedding'#
- label = 'label'#
- link_to_data = 'link_to_data'#
- raw_data = 'raw_data'#
- retrieved_document_ids = 'retrieved_document_ids'#
- retrieved_document_scores = 'retrieved_document_scores'#
- score = 'score'#